Skip to main content

Construction & inference (Time series) in Java

package com.bayesserver.examples;

import com.bayesserver.*;
import com.bayesserver.inference.*;

import java.util.Arrays;

public class DbnExample {

public static void main(String[] args) throws InconsistentEvidenceException {

// In this example we programatically create a Dynamic Bayesian network (time series).
// Note that you can automatically define nodes from data using
// classes in BayesServer.Data.Discovery,
// and you can automatically learn the parameters using classes in
// BayesServer.Learning.Parameters,
// however here we build a Bayesian network from scratch.

Network network = new Network("DBN");

State cluster1 = new State("Cluster1");
State cluster2 = new State("Cluster2");
State cluster3 = new State("Cluster3");
Variable varTransition = new Variable("Transition", cluster1, cluster2, cluster3);
Node nodeTransition = new Node(varTransition);

// make the node temporal, so that it appears in each time slice
nodeTransition.setTemporalType(TemporalType.TEMPORAL);

Variable varObs1 = new Variable("Obs1", VariableValueType.CONTINUOUS);
Variable varObs2 = new Variable("Obs2", VariableValueType.CONTINUOUS);
Variable varObs3 = new Variable("Obs3", VariableValueType.CONTINUOUS);
Variable varObs4 = new Variable("Obs4", VariableValueType.CONTINUOUS);

// observation node is a multi variable node, consisting of 4 continuous variables
Node nodeObservation = new Node("Observation", new Variable[]{varObs1, varObs2, varObs3, varObs4});
nodeObservation.setTemporalType(TemporalType.TEMPORAL);

network.getNodes().add(nodeTransition);
network.getNodes().add(nodeObservation);

// link the transition node to the observation node within each time slice
network.getLinks().add(new Link(nodeTransition, nodeObservation));

// add a temporal link of order 1. This links the transition node to itself in the next time slice
network.getLinks().add(new Link(nodeTransition, nodeTransition, 1));

// at this point the structural specification is complete

// now complete the distributions

// because the transition node has an incoming temporal link of order 1 (from itself), we must specify
// two distributions, the first of which is specified for time = 0

StateContext cluster1Time0 = new StateContext(cluster1, 0);
StateContext cluster2Time0 = new StateContext(cluster2, 0);
StateContext cluster3Time0 = new StateContext(cluster3, 0);

Table prior = nodeTransition.newDistribution(0).getTable();
prior.set(0.2, cluster1Time0);
prior.set(0.3, cluster2Time0);
prior.set(0.5, cluster3Time0);

// NewDistribution does not assign the new distribution, so it still must be assigned
nodeTransition.setDistribution(prior);

// the second is specified for time >= 1
Table transition = nodeTransition.newDistribution(1).getTable();

// when specifying temporal distributions, variables which belong to temporal nodes must have times associated
// NOTE: Each time is specified relative to the current point in time which is defined as zero,
// therefore the time for variables at the previous time step is -1

StateContext cluster1TimeM1 = new StateContext(cluster1, -1);
StateContext cluster2TimeM1 = new StateContext(cluster2, -1);
StateContext cluster3TimeM1 = new StateContext(cluster3, -1);

transition.set(0.2, cluster1TimeM1, cluster1Time0);
transition.set(0.3, cluster1TimeM1, cluster2Time0);
transition.set(0.5, cluster1TimeM1, cluster3Time0);
transition.set(0.4, cluster2TimeM1, cluster1Time0);
transition.set(0.4, cluster2TimeM1, cluster2Time0);
transition.set(0.2, cluster2TimeM1, cluster3Time0);
transition.set(0.9, cluster3TimeM1, cluster1Time0);
transition.set(0.09, cluster3TimeM1, cluster2Time0);
transition.set(0.01, cluster3TimeM1, cluster3Time0);

// an alternative would be to set values using TableIterator.CopyFrom

//new TableIterator(transition, new Variable[] { varTransition, varTransition }, new int?[] { -1, 0 }).CopyFrom(new double[]
// {
// 0.2, 0.3, 0.5, 0.4, 0.4, 0.2, 0.9, 0.09, 0.01
// });

nodeTransition.getDistributions().set(1, transition);

// Node observation does not have any incoming temporal links, so
// only requires a distribution specified at time >=0
// Calling NewDistribution without specifying a time assumes time zero.
CLGaussian gaussian = (CLGaussian) nodeObservation.newDistribution();

// set the Gaussian parameters corresponding to the state "Cluster1" of variable "transition"

VariableContext varObs1Time0 = new VariableContext(varObs1, 0, HeadTail.HEAD);
VariableContext varObs2Time0 = new VariableContext(varObs2, 0, HeadTail.HEAD);
VariableContext varObs3Time0 = new VariableContext(varObs3, 0, HeadTail.HEAD);
VariableContext varObs4Time0 = new VariableContext(varObs4, 0, HeadTail.HEAD);

gaussian.setMean(varObs1Time0, 3.2, cluster1Time0);
gaussian.setMean(varObs2Time0, 2.4, cluster1Time0);
gaussian.setMean(varObs3Time0, -1.7, cluster1Time0);
gaussian.setMean(varObs4Time0, 6.2, cluster1Time0);

gaussian.setVariance(varObs1Time0, 2.3, cluster1Time0);
gaussian.setVariance(varObs2Time0, 2.1, cluster1Time0);
gaussian.setVariance(varObs3Time0, 3.2, cluster1Time0);
gaussian.setVariance(varObs4Time0, 1.4, cluster1Time0);

gaussian.setCovariance(varObs1Time0, varObs2Time0, -0.3, cluster1Time0);
gaussian.setCovariance(varObs1Time0, varObs3Time0, 0.5, cluster1Time0);
gaussian.setCovariance(varObs1Time0, varObs4Time0, 0.35, cluster1Time0);
gaussian.setCovariance(varObs2Time0, varObs3Time0, 0.12, cluster1Time0);
gaussian.setCovariance(varObs2Time0, varObs4Time0, 0.1, cluster1Time0);
gaussian.setCovariance(varObs3Time0, varObs4Time0, 0.23, cluster1Time0);

// set the Gaussian parameters corresponding to the state "Cluster2" of variable "transition"
gaussian.setMean(varObs1Time0, 3.0, cluster2Time0);
gaussian.setMean(varObs2Time0, 2.8, cluster2Time0);
gaussian.setMean(varObs3Time0, -2.5, cluster2Time0);
gaussian.setMean(varObs4Time0, 6.9, cluster2Time0);

gaussian.setVariance(varObs1Time0, 2.1, cluster2Time0);
gaussian.setVariance(varObs2Time0, 2.2, cluster2Time0);
gaussian.setVariance(varObs3Time0, 3.3, cluster2Time0);
gaussian.setVariance(varObs4Time0, 1.5, cluster2Time0);

gaussian.setCovariance(varObs1Time0, varObs2Time0, -0.4, cluster2Time0);
gaussian.setCovariance(varObs1Time0, varObs3Time0, 0.5, cluster2Time0);
gaussian.setCovariance(varObs1Time0, varObs4Time0, 0.45, cluster2Time0);
gaussian.setCovariance(varObs2Time0, varObs3Time0, 0.22, cluster2Time0);
gaussian.setCovariance(varObs2Time0, varObs4Time0, 0.15, cluster2Time0);
gaussian.setCovariance(varObs3Time0, varObs4Time0, 0.24, cluster2Time0);

// set the Gaussian parameters corresponding to the state "Cluster3" of variable "transition"

gaussian.setMean(varObs1Time0, 3.8, cluster3Time0);
gaussian.setMean(varObs2Time0, 2.0, cluster3Time0);
gaussian.setMean(varObs3Time0, -1.9, cluster3Time0);
gaussian.setMean(varObs4Time0, 6.25, cluster3Time0);

gaussian.setVariance(varObs1Time0, 2.34, cluster3Time0);
gaussian.setVariance(varObs2Time0, 2.11, cluster3Time0);
gaussian.setVariance(varObs3Time0, 3.22, cluster3Time0);
gaussian.setVariance(varObs4Time0, 1.43, cluster3Time0);

gaussian.setCovariance(varObs1Time0, varObs2Time0, -0.31, cluster3Time0);
gaussian.setCovariance(varObs1Time0, varObs3Time0, 0.52, cluster3Time0);
gaussian.setCovariance(varObs1Time0, varObs4Time0, 0.353, cluster3Time0);
gaussian.setCovariance(varObs2Time0, varObs3Time0, 0.124, cluster3Time0);
gaussian.setCovariance(varObs2Time0, varObs4Time0, 0.15, cluster3Time0);
gaussian.setCovariance(varObs3Time0, varObs4Time0, 0.236, cluster3Time0);

nodeObservation.setDistribution(gaussian);

// optional check to validate network
network.validate(new ValidationOptions());


// at this point the network has been fully specified

// we will now perform some queries on the network

Inference inference = new RelevanceTreeInference(network);
QueryOptions queryOptions = new RelevanceTreeQueryOptions();
QueryOutput queryOutput = new RelevanceTreeQueryOutput();

// set some temporal evidence

inference.getEvidence().set(varObs1, new Double[]{2.2, 2.4, 2.6, 2.9}, 0, 0, 4);
inference.getEvidence().set(varObs2, new Double[]{null, 4.0, 4.1, 4.88}, 0, 0, 4);
inference.getEvidence().set(varObs3, new Double[]{-2.5, -2.3, null, -4.0}, 0, 0, 4);
inference.getEvidence().set(varObs4, new Double[]{4.0, 6.5, 4.9, 4.4}, 0, 0, 4);

queryOptions.setLogLikelihood(true); // only ask for this if you really need it

// predict the observation variables one time step in the future
int predictTime = 4;

CLGaussian[] gaussianFuture = new CLGaussian[nodeObservation.getVariables().size()];

for (int i = 0; i < gaussianFuture.length; i++) {
gaussianFuture[i] = new CLGaussian(nodeObservation.getVariables().get(i), predictTime);
inference.getQueryDistributions().add(gaussianFuture[i]);
}

// we will also demonstrate querying a joint distribution

CLGaussian jointFuture = new CLGaussian(Arrays.asList(varObs1, varObs2), predictTime);
inference.getQueryDistributions().add(jointFuture);


inference.query(queryOptions, queryOutput); // note that this can raise an exception (see help for details)

System.out.println("LogLikelihood: " + queryOutput.getLogLikelihood());
System.out.println();

for (int h = 0; h < gaussianFuture.length; h++) {
Variable variableH = nodeObservation.getVariables().get(h);
System.out.println(String.format("P(%s(t=4)|evidence)=%s", variableH.getName(), gaussianFuture[h].getMean(variableH, predictTime)));
}

System.out.println();
System.out.println(String.format("P(%s,%s|evidence)=", varObs1.getName(), varObs2.getName()));
System.out.println(jointFuture.getMean(varObs1, predictTime) + "\t" + jointFuture.getMean(varObs2, predictTime));
System.out.println(jointFuture.getVariance(varObs1, predictTime) + "\t" + jointFuture.getCovariance(varObs1, predictTime, varObs2, predictTime));
System.out.println(jointFuture.getCovariance(varObs2, predictTime, varObs1, predictTime) + "\t" + jointFuture.getVariance(varObs2, predictTime));

// Expected output...

// LogLikelihood: -26.3688322999762

// P(Obs1(t=4)|evidence)=3.33914912825023
// P(Obs2(t=4)|evidence)=2.38039739886759
// P(Obs3(t=4)|evidence)=-1.98416436694525
// P(Obs4(t=4)|evidence)=6.40822262492584

// P(Obs1,Obs2|evidence)=
// 3.33914912825023 2.38039739886759
// 2.36608725717058 -0.427500059391733
// -0.427500059391733 2.22592296205311



}
}