import jpype
import jpype.imports
from jpype.types import *
classpath = "lib/bayesserver-10.8.jar"
jpype.startJVM(classpath=[classpath])
from com.bayesserver import *
from com.bayesserver.inference import *
from com.bayesserver.analysis import *
from jpype import java
network_path = 'networks/Asia.bayes'
network = Network()
network.load(network_path)
variables = network.getVariables()
visit_to_asia = variables.get('Visit to Asia', True)
has_lung_cancer = variables.get('Has Lung Cancer', True)
tuberculosis_or_cancer = variables.get('Tuberculosis or Cancer', True)
smoker = variables.get('Smoker', True)
has_tuberculosis = variables.get('Has Tuberculosis', True)
dyspnea = variables.get('Dyspnea', True)
xray_result = variables.get('XRay Result', True)
has_bronchitis = variables.get('Has Bronchitis', True)
xRayResultAbnormal = xray_result.getStates().get('Abnormal', True)
smokerFalse = smoker.getStates().get('False', True)
hasLungCancerFalse = has_lung_cancer.getStates().get('False', True)
evidence = DefaultEvidence(network)
sensitivity = SensitivityToParameters(network, RelevanceTreeInferenceFactory())
parameters_to_test = []
parameters_to_test.append(
ParameterReference(has_lung_cancer.getNode(), [smokerFalse, hasLungCancerFalse]))
print('Node\tParameter\tMin\tMax')
for parameter in parameters_to_test:
oneWay = sensitivity.oneWay(
evidence,
xRayResultAbnormal,
parameter)
try:
output = ParameterTuning.oneWaySimple(
oneWay,
Interval(
java.lang.Double(0.2),
java.lang.Double(0.25),
IntervalEndPoint.CLOSED,
IntervalEndPoint.CLOSED))
param_states_text = '[' + ','.join([str(s.getVariable().getName()) + ' = ' + str(s.getName()) for s in parameter.getStates()]) + ']'
print('{}\t{}\t{}\t{}'.format(
parameter.getNode().getName(),
param_states_text,
output.getInterval().getMinimum(),
output.getInterval().getMaximum()
))
except ConstraintNotSatisfiedException:
print("Ignoring here as solution not found for this parameter.")