Skip to main content

Decision graph in Java

// --------------------------------------------------------------------------------------------------------------------
// <copyright file="DecisionGraphExample.java" company="Bayes Server">
// Copyright (C) Bayes Server. All rights reserved.
// </copyright>
// --------------------------------------------------------------------------------------------------------------------

package com.bayesserver.examples;

import com.bayesserver.*;
import com.bayesserver.inference.*;

public class DecisionGraphExample
{
public static void main(String[] args) throws Exception {

// In this example we will first construct the well known
// Oil Wildcatter Decision Graph (Influence diagram) manually.
// We could instead use network.Load(...) if we have an existing network.
// We will then use the Single Policy Updating algorithm to
// optimize decisions under uncertainty.

Network network = new Network();

// Add standard probability nodes...

State oilDry = new State("Dry");
State oilWet = new State("Wet");
State oilSoaking = new State("Soaking");
Variable oil = new Variable("Oil", oilDry, oilWet, oilSoaking);
Node nodeOil = new Node(oil);
network.getNodes().add(nodeOil);

State testResultClosed = new State("Closed");
State testResultOpen = new State("Open");
State testResultDiffuse = new State("Diffuse");
Variable testResult = new Variable("Test Result", testResultClosed, testResultOpen, testResultDiffuse);
Node nodeTestResult = new Node(testResult);
network.getNodes().add(nodeTestResult);

// Add decision nodes...

State testYes = new State("Yes");
State testNo = new State("No");
Variable test = new Variable("Test?", VariableValueType.DISCRETE, VariableKind.DECISION);
test.getStates().add(testYes);
test.getStates().add(testNo);
Node nodeTest = new Node(test);
network.getNodes().add(nodeTest);

State drillYes = new State("Yes");
State drillNo = new State("No");
Variable drill = new Variable("Drill?", VariableValueType.DISCRETE, VariableKind.DECISION);
drill.getStates().add(drillYes);
drill.getStates().add(drillNo);
Node nodeDrill = new Node(drill);
network.getNodes().add(nodeDrill);

// Add utility nodes...

// Note that utility variables in Bayes Server are continuous. They can even have variances.

Variable drillUtility = new Variable("Drill utility", VariableValueType.CONTINUOUS, VariableKind.UTILITY);
Node nodeDrillUtility = new Node(drillUtility);
network.getNodes().add(nodeDrillUtility);

Variable testUtility = new Variable("Test utility", VariableValueType.CONTINUOUS, VariableKind.UTILITY);
Node nodeTestUtility = new Node(testUtility);
network.getNodes().add(nodeTestUtility);

// When a network has more than one utility node
// we need to add a further (leaf) utility node which
// both determines how the other utilities are to be combined
// and also provides a means of querying the maximum expected utility.
// We can even perform joint queries.

Variable meu = new Variable("MEU", VariableValueType.CONTINUOUS, VariableKind.UTILITY);
Node nodeMeu = new Node(meu);
network.getNodes().add(nodeMeu);


// Add the links

NetworkLinkCollection links = network.getLinks();
links.add(new Link(nodeOil, nodeTestResult));
links.add(new Link(nodeOil, nodeDrillUtility));
links.add(new Link(nodeTestResult, nodeDrill));
links.add(new Link(nodeTest, nodeTestResult));
links.add(new Link(nodeTest, nodeDrill));
links.add(new Link(nodeTest, nodeTestUtility));
links.add(new Link(nodeDrill, nodeDrillUtility));
links.add(new Link(nodeDrillUtility, nodeMeu));
links.add(new Link(nodeTestUtility, nodeMeu));


// Here we will manually specify the distributions
// but we could also learn them from data

Table tableOil = nodeOil.newDistribution().getTable();
tableOil.set(0.5, oilDry);
tableOil.set(0.3, oilWet);
tableOil.set(0.2, oilSoaking);
nodeOil.setDistribution(tableOil);

Table tableTestResult = nodeTestResult.newDistribution().getTable();

// We could set each value as we did for the previous distribution
// however because there are quite a few values we will use
// a table iterator

double third = 1.0 / 3.0;

new TableIterator(
tableTestResult,
new Node[] { nodeOil, nodeTest, nodeTestResult }
).copyFrom(
new double[]{
0.1, 0.3, 0.6, third, third, third, 0.3, 0.4, 0.3, third, third, third, 0.5, 0.4, 0.1, third, third, third});

nodeTestResult.setDistribution(tableTestResult);

Table tableTest = nodeTest.newDistribution().getTable();
tableTest.normalize(true); // set to uniform distribution
nodeTest.setDistribution(tableTest);

Table tableDrill = nodeDrill.newDistribution().getTable();
tableDrill.normalize(true); // set to uniform distribution
nodeDrill.setDistribution(tableDrill);

// In the oil wildcatter example, all utilities have zero variance (point Gaussians)
// however Bayes Server supports utility distributions with variances.
// In fact, if you learn the distributions from data they will typically have
// non-zero variances.

CLGaussian gaussianDrillUtility = (CLGaussian)nodeDrillUtility.newDistribution();
gaussianDrillUtility.setMean(drillUtility, -70.0, oilDry, drillYes);
gaussianDrillUtility.setMean(drillUtility, 0.0, oilDry, drillNo);
gaussianDrillUtility.setMean(drillUtility, 50.0, oilWet, drillYes);
gaussianDrillUtility.setMean(drillUtility, 0.0, oilWet, drillNo);
gaussianDrillUtility.setMean(drillUtility, 200.0, oilSoaking, drillYes);
gaussianDrillUtility.setMean(drillUtility, 0.0, oilSoaking, drillNo);
nodeDrillUtility.setDistribution(gaussianDrillUtility);

CLGaussian gaussianTestUtility = (CLGaussian)nodeTestUtility.newDistribution();
gaussianTestUtility.setMean(testUtility, -10.0, testYes);
gaussianTestUtility.setMean(testUtility, 0.0, testNo);
nodeTestUtility.setDistribution(gaussianTestUtility);

// The MEU utility defines how the utilities are combined.
// In this example we just add them, by giving each parent a weight of 1
CLGaussian gaussianMeu = (CLGaussian)nodeMeu.newDistribution();
gaussianMeu.setWeight(meu, drillUtility, 1.0);
gaussianMeu.setWeight(meu, testUtility, 1.0);
nodeMeu.setDistribution(gaussianMeu);


// Now the network structure and distributions are fully specified

// Next, lets query the network.

InferenceFactory factory = new RelevanceTreeInferenceFactory();
Inference inference = factory.createInferenceEngine(network);
QueryOptions queryOptions = factory.createQueryOptions();
QueryOutput queryOutput = factory.createQueryOutput();

// We want to optimize the decisions under uncertainty so will
// use the Single Policy Updating algorithm (SPU)
queryOptions.setDecisionAlgorithm(DecisionAlgorithm.SINGLE_POLICY_UPDATING_LIGHT);

Table queryOil = new Table(oil); // query a probability variable
Table queryDrill = new Table(drill); // query a decision variable
CLGaussian queryMeu = new CLGaussian(meu); // get the Maximum Expected Utility (MEU)
CLGaussian queryJoint = new CLGaussian(new Variable[] { meu, oil }); // we can also query joint distributions.

QueryDistributionCollection queryDistributions = inference.getQueryDistributions();
queryDistributions.add(queryOil);
queryDistributions.add(queryDrill);
queryDistributions.add(queryMeu);
queryDistributions.add(queryJoint);

// If we have any evidence to set use
// inference.Evidence.Set or inference.Evidence.SetState
// here

inference.query(queryOptions, queryOutput);

double oilDryValue = queryOil.get(oilDry);
System.out.println(String.format("Oil = Dry\t%s", oilDryValue)); // expected 0.5

double meuValue = queryMeu.getMean(meu);
System.out.println(String.format("MEU\t%s", meuValue)); // expected value 22.5

double drillYesValue = queryDrill.get(drillYes);
System.out.println(String.format("Drill? = Yes\t%s", drillYesValue)); // expected 0.59

double meuOilDry = queryJoint.getMean(meu, oilDry);
System.out.println(String.format("MEU Oil=Dry\t%s", meuOilDry)); // expected -38.0



}
}