Uses of Class
com.bayesserver.VariableContext
-
Packages that use VariableContext Package Description com.bayesserver com.bayesserver.analysis com.bayesserver.inference com.bayesserver.statistics -
-
Uses of VariableContext in com.bayesserver
Methods in com.bayesserver that return VariableContext Modifier and Type Method Description VariableContextVariableContextCollection. get(int index)Gets theVariableobject at the specified index.VariableContextVariableContextCollection. set(int index, VariableContext value)Gets theVariableobject at the specified index.Methods in com.bayesserver with parameters of type VariableContext Modifier and Type Method Description booleanVariableContextCollection. contains(VariableContext variableContext, boolean ignoreHeadTail)Determines whether a variable-time (and optionally Head/Tail) combination is contained in the collection.doubleCLGaussian. getCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, State... discrete)Gets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).doubleCLGaussian. getCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, StateContext... discrete)Gets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).doubleCLGaussian. getCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, TableIterator iterator)Gets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).doubleCLGaussian. getMean(VariableContext continuousHead, State... discrete)Gets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.doubleCLGaussian. getMean(VariableContext continuousHead, StateContext... discrete)Gets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.doubleCLGaussian. getMean(VariableContext continuousHead, TableIterator iterator)Gets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the discrete combination.doubleCLGaussian. getVariance(VariableContext continuousHead, State... discrete)Gets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).doubleCLGaussian. getVariance(VariableContext continuousHead, StateContext... discrete)Gets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).doubleCLGaussian. getVariance(VariableContext continuousHead, TableIterator iterator)Gets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).doubleCLGaussian. getWeight(VariableContext continuousHead, VariableContext continuousTail, State... discrete)Gets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).doubleCLGaussian. getWeight(VariableContext continuousHead, VariableContext continuousTail, StateContext... discrete)Gets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).doubleCLGaussian. getWeight(VariableContext continuousHead, VariableContext continuousTail, TableIterator iterator)Gets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).intVariableContextCollection. indexOf(VariableContext variableContext, boolean ignoreHeadTail)Determines the index of a specific variable-time combination in the collection.VariableContextVariableContextCollection. set(int index, VariableContext value)Gets theVariableobject at the specified index.voidCLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value)Sets the covariance of a Gaussian distribution with no discrete variables between [continuousHeadA] and [continuousHeadB].voidCLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value, State... discrete)Sets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).voidCLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value, StateContext... discrete)Sets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).voidCLGaussian. setCovariance(VariableContext continuousHeadA, VariableContext continuousHeadB, double value, TableIterator iterator)Sets the covariance of the Gaussian distribution between [continuousHeadA] and [continuousHeadB] for a particular discrete combination (mixture).voidCLGaussian. setMean(VariableContext continuousHead, double value, State... discrete)Sets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.voidCLGaussian. setMean(VariableContext continuousHead, double value, StateContext... discrete)Sets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the [discrete] combination.voidCLGaussian. setMean(VariableContext continuousHead, double value, TableIterator iterator)Sets the mean value of the Gaussian distribution for the specified [continuousHead] variable for the discrete combination.voidCLGaussian. setVariance(VariableContext continuousHead, double value, State... discrete)Sets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).voidCLGaussian. setVariance(VariableContext continuousHead, double value, StateContext... discrete)Sets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).voidCLGaussian. setVariance(VariableContext continuousHead, double value, TableIterator iterator)Sets the variance of the Gaussian distribution for the specified [continuousHead] variable for a particular discrete combination (mixture).voidCLGaussian. setWeight(VariableContext continuousHead, VariableContext continuousTail, double value, State... discrete)Sets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).voidCLGaussian. setWeight(VariableContext continuousHead, VariableContext continuousTail, double value, StateContext... discrete)Sets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).voidCLGaussian. setWeight(VariableContext continuousHead, VariableContext continuousTail, double value, TableIterator iterator)Sets the weight/regression coefficient of the Gaussian distribution between the [continuousTail] and [continuousHead] for a particular discrete combination (mixture).Method parameters in com.bayesserver with type arguments of type VariableContext Modifier and Type Method Description booleanVariableContextCollection. containsAll(List<VariableContext> items, boolean ignoreHeadTail)Determines whether all [items] are matched in the collection at the specified times.Constructors in com.bayesserver with parameters of type VariableContext Constructor Description CLGaussian(VariableContext variableContext)Initializes a new instance of theCLGaussianclass from a singleVariableContext.CLGaussian(VariableContext[] variableContexts)Initializes a new instance of theCLGaussianclass with [count] variables specified in [variableContexts].CLGaussian(VariableContext[] variableContexts, int count)Initializes a new instance of theCLGaussianclass with [count] variables specified in [variableContexts].CLGaussian(VariableContext[] variableContexts, int count, HeadTail headTail)Initializes a new instance of theCLGaussianclass with [count] variables specified in [variableContexts].Table(VariableContext variableContext)Initializes a new instance of theTableclass from a singleVariableContext.Table(VariableContext[] variableContexts)Initializes a new instance of theTableclass with [variableContexts] specifying which variables to include in the distribution.Table(VariableContext[] buffer, int count)Initializes a new instance of theTableclass with [count] variable contexts taken from [buffer].Table(VariableContext[] buffer, int count, HeadTail headTail)Initializes a new instance of theTableclass with [count] variable contexts taken from [buffer].VariableContext(VariableContext variableContext)Initializes a new instance of theVariableContextclass, copying an existing instance.Constructor parameters in com.bayesserver with type arguments of type VariableContext Constructor Description CLGaussian(List<VariableContext> variableContexts)Initializes a new instance of theCLGaussianclass with the variables specified in [variableContexts].CLGaussian(List<VariableContext> variableContexts, HeadTail headTail)Initializes a new instance of theCLGaussianclass with the variables specified in [variableContexts].Table(List<VariableContext> variableContexts)Initializes a new instance of theTableclass with [variableContexts] specifying which variables to include in the distribution.Table(List<VariableContext> variableContexts, HeadTail headTail)Initializes a new instance of theTableclass with [variableContexts] specifying which variables to include in the distribution.TableAccessor(Table table, List<VariableContext> order)Initializes a new instance of theTableAccessorclass, allowing random access to [table] with a specified [order] for the variables.TableIterator(Table table, List<VariableContext> order)Initializes a new instance of theTableIteratorclass, allowing sequential access to [table] with a specified [order] for the node variables.VariableMap(VariableContextCollection sortedVariables, List<VariableContext> order)Initializes a new instance of theVariableMapclass. -
Uses of VariableContext in com.bayesserver.analysis
Methods in com.bayesserver.analysis that return VariableContext Modifier and Type Method Description VariableContextValueOfInformationTestOutput. getVariable()Gets the variable that was tested.Methods in com.bayesserver.analysis that return types with arguments of type VariableContext Modifier and Type Method Description List<VariableContext>AssociationPair. getX()Gets the variable contexts in the first set.List<VariableContext>AssociationPair. getY()Gets the varible contexts in the second set.Methods in com.bayesserver.analysis with parameters of type VariableContext Modifier and Type Method Description static ValueOfInformationOutputValueOfInformation. calculate(VariableContext hypothesis, List<VariableContext> testVariables, Evidence evidence, InferenceFactory factory, ValueOfInformationOptions options)Calculates value of information, which can be used to determine which variables are most likely to reduce the uncertainty of a particular variable.Method parameters in com.bayesserver.analysis with type arguments of type VariableContext Modifier and Type Method Description static ValueOfInformationOutputValueOfInformation. calculate(VariableContext hypothesis, List<VariableContext> testVariables, Evidence evidence, InferenceFactory factory, ValueOfInformationOptions options)Calculates value of information, which can be used to determine which variables are most likely to reduce the uncertainty of a particular variable.Constructor parameters in com.bayesserver.analysis with type arguments of type VariableContext Constructor Description AssociationPair(List<VariableContext> x, List<VariableContext> y)Initializes a new instance of theAssociationPairclass with two sets of variable contexts. -
Uses of VariableContext in com.bayesserver.inference
Methods in com.bayesserver.inference that return types with arguments of type VariableContext Modifier and Type Method Description List<VariableContext>CliqueDefinition. getVariableContexts()The variables in the clique (optionally with times for DBNs).List<VariableContext>JunctionTreeNodeDefinition. getVariableContexts()The variables in the clique or sepset (optionally with a time).List<VariableContext>SepsetDefinition. getVariableContexts()The variables in the sepset (optionally with times for DBNs). -
Uses of VariableContext in com.bayesserver.statistics
Methods in com.bayesserver.statistics with parameters of type VariableContext Modifier and Type Method Description static doubleMutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, LogarithmBase logarithmBase)Measures the dependence between two variables.static doubleMutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Calculates mutual information or conditional mutual information, which measures the dependence between two variables.Method parameters in com.bayesserver.statistics with type arguments of type VariableContext Modifier and Type Method Description static doubleEntropy. calculate(CLGaussian joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Measures the uncertainty of a distribution conditional on one or more variables.static doubleEntropy. calculate(Distribution joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Measures the uncertainty of a distribution conditional on one or more variables.static doubleEntropy. calculate(Table joint, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Measures the uncertainty of a distribution conditional on one or more variables.static doubleMutualInformation. calculate(Distribution joint, VariableContext x, VariableContext y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Calculates mutual information or conditional mutual information, which measures the dependence between two variables.static doubleMutualInformation. calculate(Distribution joint, List<VariableContext> x, List<VariableContext> y, List<VariableContext> conditionOn, LogarithmBase logarithmBase)Calculates mutual information or conditional mutual information, which measures the dependence between two variables.
-