Bayesian networks Time-series models Apache Spark & Scala

Dr John Sandiford, CTO Bayes Server

Contents

- Introduction
- Bayesian networks
- Latent variables
- Anomaly detection
- Bayesian networks & time series
- Distributed Bayesian networks
- Apache Spark & Scala

Introduction

Profile

linkedin.com/in/johnsandiford

- PhD Imperial College Bayesian networks
- Machine learning 15 years
 - Implementation
 - Application
 - Numerous techniques
- Algorithm programming even longer
 - Scala , C#, Java, C++
- Graduate scheme mathematician (BAE Systems)
- Artificial Intelligence / ML research program 8 years (GE/USAF)
- BP trading & risk analytics big data + machine learning
- Also: NYSE stock exchange, hedge fund, actuarial consultancy, national newspaper

Bayesian networks

Insight, prediction & diagnostics

Bayesian networks

- Efficient application of probability
- DAG
- Subset of wider probabilistic graphical models
- Not a black box
- Handle missing data
- Probabilistic predictions
- Both supervised & unsupervised techniques

- Superset of many well known models
 - Mixture model (cluster model)
 - Naïve Bayes
 - AR
 - Vector AR
 - Hidden Markov model
 - Kalman filter
 - Markov chains
 - Sequence clustering

Example – Asia network

$$P(\mathbf{X}, \mathbf{e}) = \sum_{\mathbf{U} \setminus \mathbf{X}} P(\mathbf{U}, \mathbf{e}) = \sum_{\mathbf{U} \setminus \mathbf{X}} \prod_{i} P(\mathbf{U}_{i} | pa(\mathbf{U}_{i})) \mathbf{e}$$

U = universe of variablesX = variables being predictede= evidence on any variables

Example – Waste network

Example – the bat (40,000 links)

Example – static & temporal

Prediction & uncertainty

- Inputs to a prediction can be missing (null)
- Discrete predictions have an associated probability, e.g.
 {0.2, 0.8}
- Continuous predictions have both a mean and variance, e.g.
 - mean =0.2, variance = 2.3
- We can calculate joint probabilities over discrete, continuous or hybrid
- We can calculate the likelihood / log-likelihood

Prediction (inference)

- Basically just probability, but with complex algorithms to perform the calculations efficiently
 - Marginalization
 - Sum (discrete), integrate (continuous)
 - Summing in margins
 - Multiplication
- Bayes Theorem
- Exact inference
 - Exact subject to numerical rounding
 - Usually explicitly or Implicitly operating on trees
- Approximate
 - Deterministic
 - Non-deterministic

x	Υ
2.0	7.9
6.9	1.98
0.1	2.1
1.1	?
9.1	7.2
?	9.2

Parameter learning

EM algorithm & extensions for missing data

D3 animated visualization available on our website

Chuster		
Cluster	_	
Cluster1		36.74 %
Cluster2		33.33 %
Cluster3		29.93 %
Gaussian		
	х	
Mean		5.84
Variance		0.681
	Y	
Mean		3.05
Variance		0.187

- This is exactly the same as a mixture model (cluster model)
- This model only has X & Y, but most models have much higher dimensionality
- We can extend other models in the same way, e.g.
 - Mixture of Naïve Bayes (no longer Naïve)
 - Mixture of time series models
 - A structured approach to ensemble methods?

- Algorithmically capture underlying mechanisms that haven't or can't be observed
- Latent variables can be both discrete & continuous
- Can be hierarchical (similar to Deep Belief networks)

Anomaly detection

Univariate Gaussian pdf

Anomaly detection – log-likelihood

- This can also be calculated for
 - Discrete, continuous & hybrid networks
 - Networks with latent variables
 - Time series networks
- Allows us to perform anomaly detection
- Under the hood, great care has to be taken to avoid underflow
 - Especially with temporal networks

Anomaly detection

Time series anomaly detection

D3 animated visualization available on our website

Bayesian networks Time series (DBN)

Sample time series data

- Multiple time series instances
- Multivariate (X1, X2)
- Different lengths

Time series, unrolled

X1 (t=1)	
Mean	
Variance	
	(#

X1 (t=2)	
Mean	
Variance	
	

X1 (t=3)	
Mean	
Variance	
	\pm

X1 (t=4)	
Mean	
Variance	
	= +

X2 (t=0)	
Mean	
Variance	
	

X2 (t=1)	
Mean	
Variance	

X2 (t=2)	
Mean	
Variance	
	Ŧ.

X2 (t=3)	
Mean	
Variance	
	\pm

X2 (t=4)	
Mean	
Variance	
	

Distributions are shared

Time series, unrolled – lag 1

Time series, unrolled – lag 4

Dynamic Bayesian network (DBN)

Equivalent model

- Structural learning algorithms can often automatically determine the links
- Cross, auto & partial correlations

Time series

- We can mix static & temporal variables in the same Bayesian network
- We can include discrete and/or continuous temporal variables

Time series & latent variables

- We can include static or temporal latent variables
 - Discrete or continuous
- In the same way that we used 3 multivariate Gaussians earlier, we can model mixtures of multivariate time series
 - i.e. model different multivariate time series behaviour
 - E.g. 2 time series may be correlated in a certain range, and anti-correlated in another

Types of time series prediction (t=time)

- P(X1@t=4)
 - Returns probabilities for discrete, mean & variance for continuous
- P(X1@t=4, X2@t=4)
 - Joint time series prediction (funnel)
- P(X1@t=2, X1@t=3)
 - Across different times
- P(A, X1@t=2)
 - Mixed static & temporal
- Log-likelihood of a multivariate time series
 - Anomaly detection

Distributed Bayesian networks

Different types of scalability

Data size

Big data?

Connectivity (discrete -> exponential)

Network size, Rephil > 1M nodes

Inference (distributed)

Data

- Algorithm is agnostic to the distributed platform
- We will look at how it can be used with Apache Spark
- .NET, Java and therefore derivatives such as Scala

RDD Objects

Apache Spark

- RDD (Resilient distributed dataset)
- In memory
- DAG execution engine
- Serialization of variables

Apache Spark

- Cache & iterate
 - Great for machine learning algorithms, including Bayesian networks
- Scala, Java, Python

Bayes Server Distributed architecture

- On each thread on each worker node, Bayes Server simply calculates the sufficient statistics
 - This often requires an inference algorithm per thread/partition
 - This plays nicely with Bayes Server streaming, without any hacking
- Could be on Hadoop + Spark + YARN, Cassandra, a desktop, or next gen platforms

Spark integration

- Moving from Hadoop mapReduce to Spark
 - Proof of concept took a single afternoon
 - Due to agnostic approach & streaming
 - RDD.mapPartitions
- Spark serialization
 - Use of companion object methods (standard approach)

Example – distributed learning

```
/**
 * Some test data. Normally you would load the data from the cluster.
 * We have hard coded it here to keep the example self contained.
 * @return An RDD
 */
def createRDD = {
  sc.parallelize(Seq(
    Seq((1.0, 2.3), (2.3, 4.5), (6.2, 7.2), (4.2, 6.6)),
    Seq((3.3, -1.2), (3.2, 4.4), (-3.3, -2.3), (4.15, 1.2), (8.8, 2.2), (4.1, 9.9)),
    Seq((1.0, 2.0), (3.3, 4.1)),
    Seq((5.0, 21.3), (4.3, 6.6), (-2.1, 4.5)),
    Seq((4.35, -3.25), (13.44, 12.4), (-1.3, 3.33), (4.2, 2.15), (12.8, 4.25)),
    Seq((1.46, 2.22), (1.37, 3.15), (2.2, 2.25))
  ))
```


Example – distributed learning

```
val sc = new SparkContext(conf)
```

```
// hard code some test data. Normally you would read data from your cluster.
val data = createRDD.cache()
// A network could be loaded from a file or stream
// we create it manually here to keep the example self contained
val network = createNetwork
val parameterLearningOptions = new ParameterLearningOptions
// Bayes Server supports multi-threaded learning
// which we want to turn off as Spark takes care of this
parameterLearningOptions.setMaximumConcurrency(1)
/// parameterLearningOptions.setMaximumIterations(...) // this can be useful to limit the number of iterations
val config = new MemoryNameValues // we could also use broadcast variables
val output = ParameterLearning.learnDistributed(network, parameterLearningOptions,
 new BayesSparkDistributer[Seq[(Double, Double)]](
    data.
   config,
    (ctx, iterator) => new TimeSeriesEvidenceReader(ctx.getNetwork, iterator)
  ))
```


Distributed time series prediction

```
// make some time series predictions into the future
val predictions = Prediction.predict[TimeSeries](
  network,
  testData,
  Seq(
    PredictVariable("X1", Some(PredictTime(5, Absolute))), PredictVariance("X1", Some(PredictTime(5, Absolute))),
    PredictVariable("X2", Some(PredictTime(5, Absolute))), PredictVariance("X2", Some(PredictTime(5, Absolute))),
    PredictVariable("X1", Some(PredictTime(6, Absolute))), PredictVariance("X1", Some(PredictTime(6, Absolute))),
    PredictVariable("X2", Some(PredictTime(6, Absolute))), PredictVariance("X2", Some(PredictTime(6, Absolute))),
    PredictLogLikelihood() // this value can be used for Time Series anomaly detection
  (network, iterator) => new TimeSeriesReader(network, iterator))
predictions.foreach(println)
```


Scala

- JVM
- Functional & OO
- Statically typed
- Apache Spark is written in Scala

Spark streaming

• Great for real time anomaly detection

GraphX

Machine learning on table data, queried from Graph

Thank you

- www.bayesserver.com download, documentation
- www.bayesserver.com/Visualization.aspx
- www.bayesserver.com/bayesspark.aspx
 - Apache Spark source code & examples

- Professional services
 - Training
 - Consultancy
 - Proof of concepts

