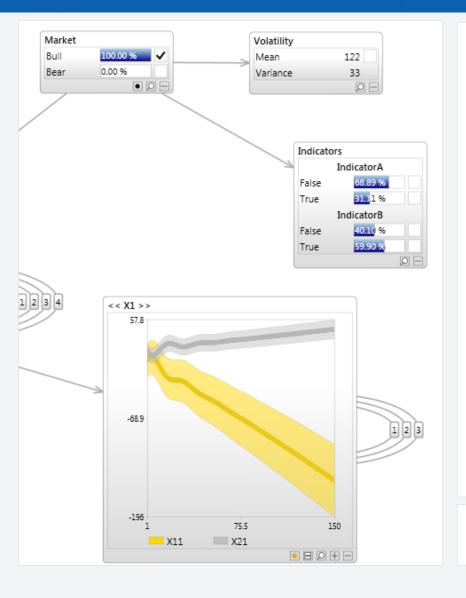


intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer



Bayesian networks Classification, segmentation,

time series prediction and more.

John Sandiford

Contents

- Background
- Bayesian networks
- Classification / regression
- Clustering / segmentation
- Time series prediction

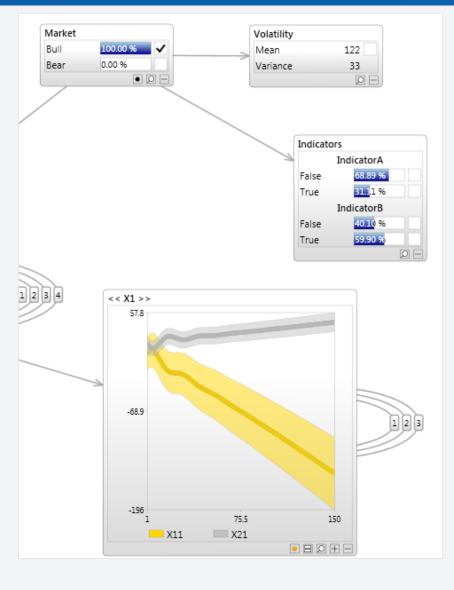
Background

- Mathematics
- Algorithms
- Data Mining
- Machine Learning
- Artificial Intelligence
- Bayesian networks
 - Research (Imperial College)
 - Software

- BAE Systems
 - Future concepts
 - Ground based diagnostics
 - Technical computing
- GE (General Electric)
 - Diagnostics
 - Prognostics
 - Reasoning
- New York Stock Exchange
 - Business Intelligence
- Bayes Server
 - Bayesian network software
 - Technical director

intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer



Bayesian networks

- Probabilistic
- Graphical
- Not a black box
- Handle conflicting evidence
 - Unlike many rule based systems
- Multivariate
- Data driven and/or expert driven
- Missing data

Tasks & Models

Tasks

- Classification
- Regression
- Clustering / Mixture models
- Density estimation
- Time series prediction
- Anomaly detection
- Decision Support
- Multivariate models
- Learning with missing data
- Probabilistic reasoning
- Text analytics

Models

- Multivariate Linear Regression
- Mixture models
- Time Series models

 AR, Vector AR
- Hidden Markov Models
- Linear Kalman Filters
- Probabilistic PCA
- Factor Analysis
- Hybrid models
 - E.g. Mixtures of PPCA

Bayesian networks

- High dimensional data

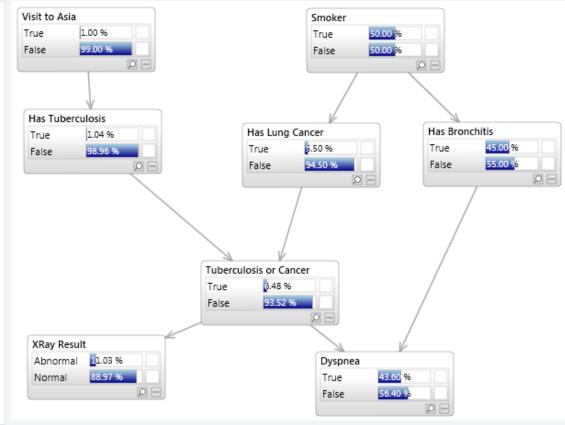
 Humans find difficult to interpret
- Discrete and continuous variables
- Allow missing data
 - Learning
 - Prediction
- Temporal and non temporal variables in the same model

Bayes Server intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

What are Bayesian networks?

- Network with nodes and links
- Nodes represent one or more variables
- Directed links used when nodes directly influence each other
 - N.B. nodes may influence each other indirectly via other nodes
- Encode conditional independence assumptions



Model parameters

• Each node requires a probability distribution conditioned on its parents

A False 20.00 %	A=False	A=True	
True 80.00 %	0.2	0.8	
В	Α	B=False	B=True
False 38.00 %	False	0.3	0.7

What is inference?

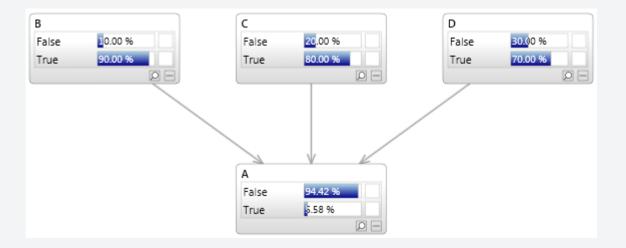
- Asking a question, given what we know
 E.g. P(A|B=True, E=False)
- We could multiply all node distributions together and get the joint distribution over all variables.
- However we can perform inference much more efficiently using the factored form

Construction

- 1. Add nodes (variables)
 - Manually (expert opinion)
 - From data
 - Data can be discretized if required
- 2. Add links
 - Manually (expert opinion)
 - From data
 - Constraint based
 - Search & score
- 3. Specify the parameters of the model
 - Manually (expert opinion)
 - From data
 - EM learning (handles missing data)

Demonstration - construction

Α	В	C	D
False	True	True	True
False	True	True	True
False	True	True	False



Notes on construction

- Support for discrete & continuous
- Missing data
- Time series data

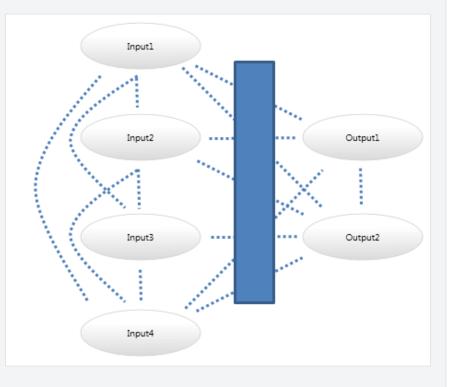
intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

In this section we discuss classification and regression with Bayesian networks.

CLASSIFICATION / REGRESSION

What is classification / regression?

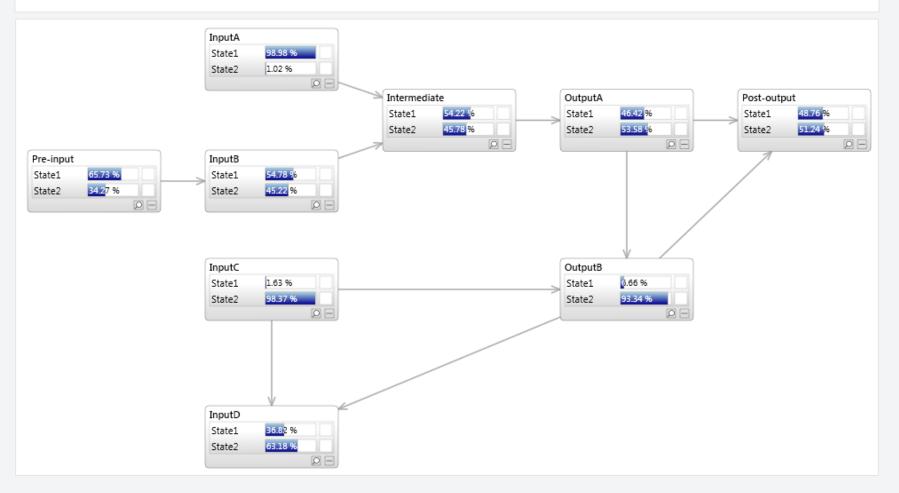


- Predict unknown values (output variables), using a number of known values (input variables).
- Learning is supervised
- Classification
 - Predicting discrete variables.
- Regression
 - Predicting continuous variables.
- Examples
 - Predict the probability of a disease given symptoms
 - Predict Bull/Bear market from market indicators

intelligent systems specialists

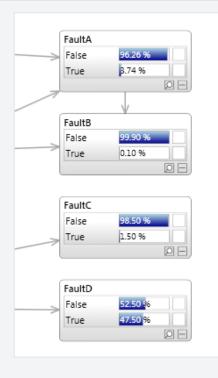
Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Classification structure



Classification outputs

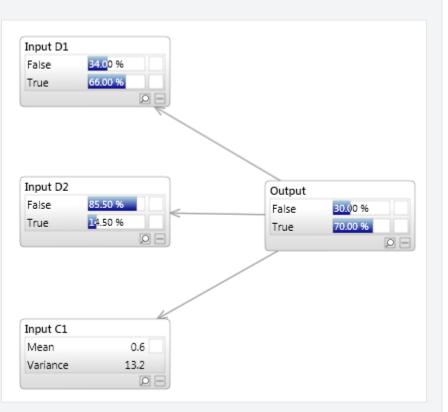
Multiple outputs



Mutually exclusive

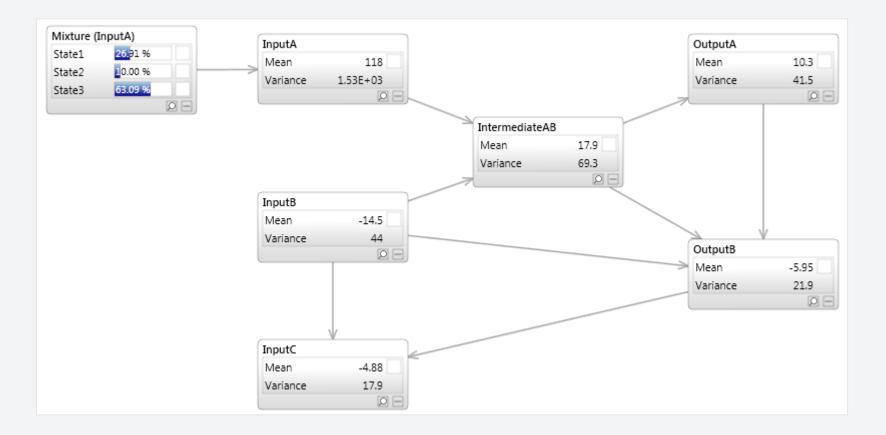
Status		
Normal	98.00 %	
FaultA	0.50 %	
FaultB	1.50 %	

Naïve Bayes classifier



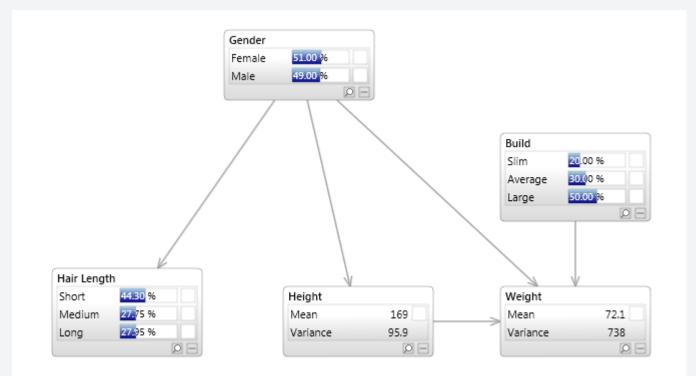
- Simple
- Fast
- Conditionally independent inputs
- Spam filters

Regression structure



Demonstration

Identification network



intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Training

Build	Gender	Hair Length	Height	Weight
Average	Male	Short	172.35	65.57
Average	Female	Medium	155.15	49.89
?	Male	Medium	188.20	113.62
Average	Male	Short	166.47	52.88

- Missing data
- Training data includes 'Gender'
- Can mix expert opinion and data

intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Prediction

٢	Ba	tch	query						
		•	Batch query Format	Charts Statistics					
			Window Data Connection	State valu	5-17	Min 1		gorithm	
-	Sta	rt	Data Connection Retract	Create State nar	nes Most	Max 5		levance Tree 🔹	
				tables 🖌 Skip if qu	probable	Terminal 0	Relative •		
			query Output	t l	Options		[emporal	Algorithm	
Α	3	Ż,		5	LogLikelihood	Predict(Gender)	PredictProbability(Gender)		
			Query	Destination	-4.52705	Female	97.309 %		
) .	+ -	- Statistics		-3.86687	Male	98.891 %		
\sim					-4.04850	Male	90.893 %	Female	
22			LogLikelihood	LogLikelihood	-4.48772	Female	96.802 %	Female	
Ω		_	Likelihood	Likelihood	-4.62802	Female	99.696 %	Female	
-			Conflict	Conflict	-4.29521	Female	96.669 %	Female	
Ω			SequenceLength	SequenceLength	-3.82764	Male	98.594 %	Male	
Ω			EvidenceCount	EvidenceCount	-4.45111	Female	96.077 %	Female	
•) -	+ -	Gender		-4.52506	Male	76.568 %	Male	
Ô,	E	1	Predict(Gender)	Predict(Gender)	-5.14872	Female	77.947 %	Female	
0.		_	PredictProbability(Gender)		-4.15575	Male	88.142 %	Male	
Q.			PredictProbability(Gender=		-5.43773	Male	84.356 %	Male	
		_	PredictProbability(Gender=		-1.27475	Female	91.234 %	Female	
			realed robability(centeel =	ricolect roodonity(cerk	-4.59815	Female	97.907 %	Female	
\bigcirc) -	+ -	- Hair Length		-4.91317	Female	84.380 %	Female	
Q.			Predict(Hair Length)	Predict(Hair Length)	-4.62013	Male	73.188 %	Female	
Q.			PredictProbability(Hair Lene	PredictProbability(Hair	-5.39631	Male	99.925 %	Male	
Q.			PredictProbability(Hair Len	PredictProbability(Hair	-0.81419	Male	88.488 %	Male	
Q.		_	PredictProbability(Hair Len		-4.31858	Female	96.261 %		
Q,			PredictProbability(Hair Leng	PredictProbability(Hair	-4.55950	Female	77.692 %		
iΞ		-	Hair Length	Hair Length	-3.88568	Male	98.987 %		
0					-4.80469	Male	65.885 %		
٢		+ ·	- Height		-4.90171	Male	51.817 %		
Q.			Predict(Height)	Predict(Height)	-4.48886	Female	96.819 %		
Q.			Variance(Height)	Variance(Height)	-4.44898	Female	86.821 %		
:≡			Height	Height	-4.33153	Female	99.292 %		
			- Information						
\smile					-4.49888	Female	82.602 %		
	5		Gender	Gender	-4.42257	Female	95.057 %		
					-5.47282	Female	62.733 %		
					-5.84279	Female	99.946 %		
4				•	-3.88641	Male	98.990 %	Male	

Bayes Server intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Model performance & comparison

Confusion matrix	Display	value: Count	•
Actual ↓	Female (Predicted)	Male (Predicted)	
Female (Actual)	660	32	
Male (Actual)	28	644	

- Additional variables?
- BIC
- Confusion matrix
- Lift Chart
- Over fitting

intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

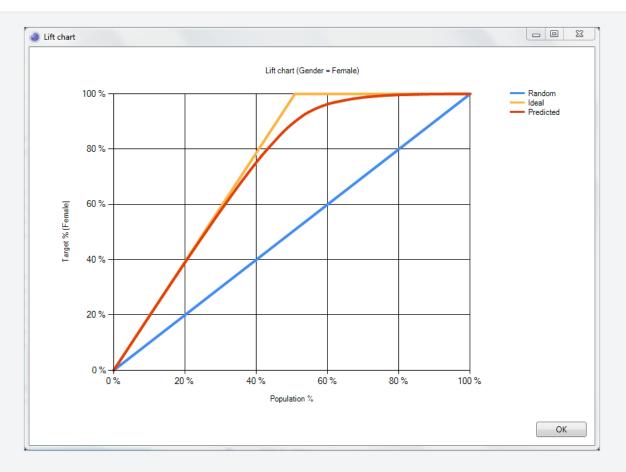
Confusion matrix

Actual ↓	State1 (Predicted)	State2 (Predicted)	State3 (Predicted)	State4 (Predicted)	State5 (Predicted)	State6 (Predicted)	State7 (Predicted)	State8 (Predicted)
State1 (Actual)	90.12 %	0.00 %	9.88 %	0.00 % 0.00 %		0.00 %	0.00 %	0.00 %
State2 (Actual)	0.00 %	100.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %	0.00 %
State3 (Actual)	0.00 %	0.00 %	92.66 %	0.00 %	0.00 %	7.34 %	0.00 %	0.00 %
State4 (Actual)	0.00 %	0.00 %	0.00 %	100.00 %	0.00 %	0.00 %	0.00 %	0.00 %
State5 (Actual)	0.00 %	0.00 %	12.69 %	0.00 %	87.31 %	0.00 %	0.00 %	0.00 %

intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Lift chart



intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

In this section we discuss clustering / segmentation with Bayesian networks

CLUSTERING / SEGMENTATION

What is clustering / segmentation?

- Unsupervised learning approach
- No outputs in the data, only inputs
- Finds natural groupings in the data
- Multivariate, handling high dimensional data
- E.g. Targeted marketing

Bayes Server intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Usage

Data exploration

Mixture models are useful for identifying key characteristics of your data, such as the most common relationships between variables, and also unusual relationships.

Segmentation

Because clustering detects similar groups, we can identify a group that has certain qualities and then determine segments of our data that have a high probability of belonging to that group.

Anomaly detection

Unseen data can be compared against a model, to determine how unusual (anomalous) that data is. Often the log likelihood statistic is used as a measure, as it tells you how likely it is that the model could have generated that data point. While humans are very good at interpreting 2D and 3D data, we are not so good in higher dimensional space. For example a mixture model could have tens or even hundreds of dimensions.

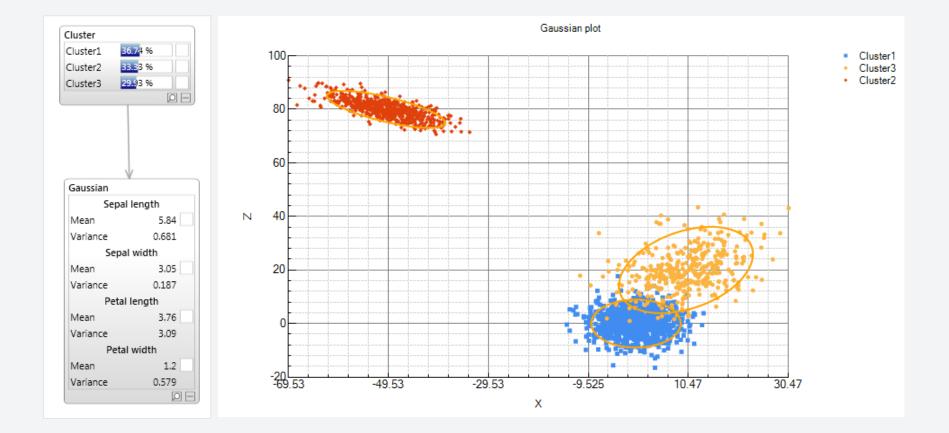
Prediction

Although Mixture models are an unsupervised learning technique, we can use them for prediction if during learning, we include variables we wish to predict (output variables).

intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Demonstration – mixture model



Mixture model – anomaly detection

X	Y	Ζ
-41.04	25.04	73.13
-2.32	83.20	29.59
17.57	87.94	22.85

- No data mapped to Cluster variable
- Missing data allowed
- Predict (Cluster)
- Log likelihood
- Conflict

intelligent systems specialists

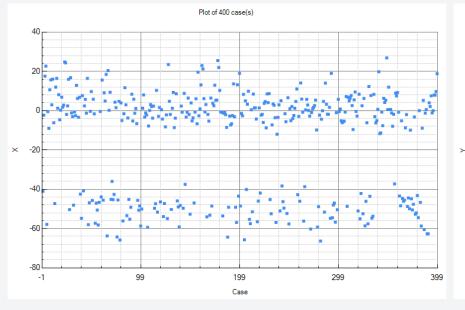
Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

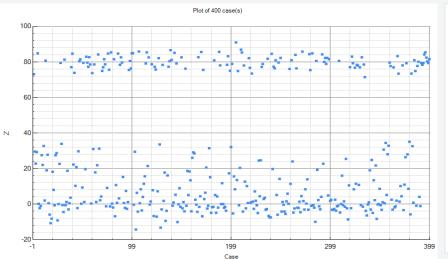
Mixture model – batch prediction

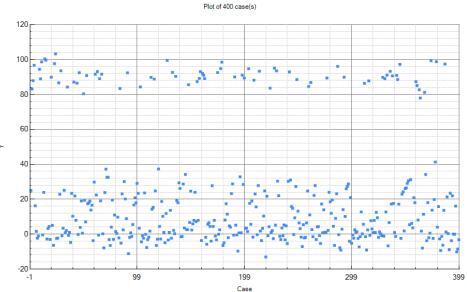
Batch query											
batch query romat	Charts Statistics		Min	1	Relative	•	Algorithm				
Window Data Connection		5			Relative	•	-				
Start Retract	Create	Most	Max	5		•	Relevance Tr	ee 🔹			
Batch guery Outp		probable	Terminal	0 Temp	Relative	-	Algor	itiana			
A S	ut i Options		Case		oral	0	onflict	X	Y	Z	
		5	0	-10	-	-3.9		-41	25	73.1	
Query	Destination		1	-14		0.4		-2.32	83.2	29.6	
 + - Statistics 		<u>~</u>	2	-11		-2.9		17.6	87.9	22.9	
Ω 🗵 LogLikelihood	LogLikelihood		3	-11		-2.5		22.7	96.8	22.9	
Ω 🔲 Likelihood	Likelihood		4	-11		-4.0		-57.9	16.2	84.8	
💈 🗹 Conflict	Conflict		5	-9.		-5.0		-0.53	1.55	0.195	
Ω 🔲 SequenceLength	SequenceLength		6	-0.		-1.3		-0.55	-2.37	-2.28	
Ω 🔲 EvidenceCount	EvidenceCount		7	-10		0.3		10.6	-2.37	-2.28	
			8	-10		-		10.6	-1.07 94,4	27.5	
(^) + - Cluster			8	-10		-4.0		2.95	94.4	27.5	
🔍 🔲 Predict(Cluster)	Predict(Cluster)					-1.4					
-10-	PredictProbability(Cluster)		10	-11		-4.0		16	98.7	32.8	
- 10	 PredictProbability(Cluster=Cluster1) 		11	-8.		-1.3		-6.13	-0.457	2.06	
-10	 PredictProbability(Cluster=Cluster2) 		12	-9.		-2.0		-47.3	23.9	80.7	
🔍 🔲 PredictProbability(Cluster=	PredictProbability(Cluster=Cluster3)		13	-12		-2.0		12	100	19.1	
(A) + - X		=	14	-11		-4.4		16.4	99.7	27.8	
			15	-8.		-1.3		1.25	-2.83	0.558	
🔍 🔲 Predict(X)	Predict(X)		16	-10			182	8.17	3.21	-5.89	
🔍 🔲 Variance(X)	Variance(X)		17	-11		-1.3		-4.67	4.38	-10.6	
≡ 🗷 x	Х		18	-9.	83	-1.3	29	0.219	-3.07	-8.11	
(A) + - Y			19	-9.	91	-2.0	57	6.88	89.9	18.2	
🔍 🔲 Predict(Y)	Dee diet00		20	-10).3	-0.8	344	1.76	5.04	8.06	
	Predict(Y)		21	-9.	17	-1.3	21	2.8	-6.39	-0.667	
G □ Variance(Y) □ V Y	Variance(Y) Y		22	-12	2.2	-4.9	91	24.8	97.7	27.5	
Т — Y	T		23	-13	3.2	-5.8	39	24.3	103	28.7	
🔿 + - Z			24	-10).3	-1.3	32	-1.93	-2.5	-9.15	
🔍 🔲 Predict(Z)	Predict(Z)		25	-8.	23	-1.3	22	2.45	-2.31	0.0507	
🔍 🔲 Variance(Z)	Variance(Z)		26	-11	1.1	-2.8	31	16	86.7	22.7	
	Z	-	27	-8.	74	-2.	77	-50.4	22.8	79.5	
4			28	-11	L A	-4 (16.8	93.6	33.9	

Bayes Server intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

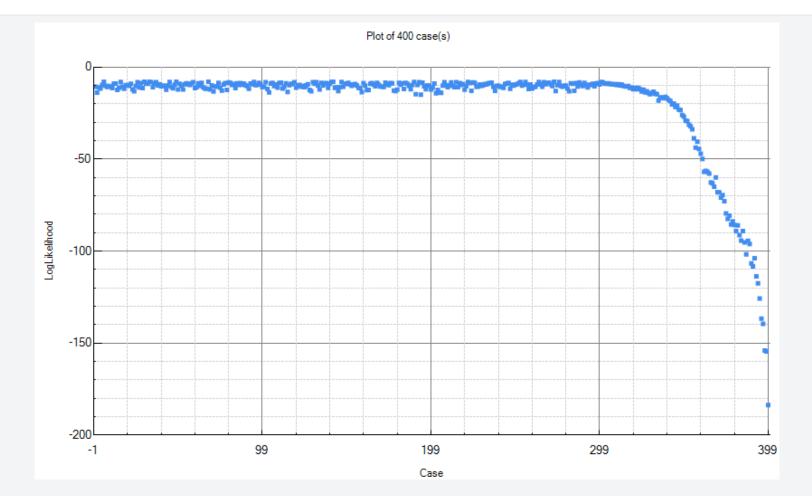




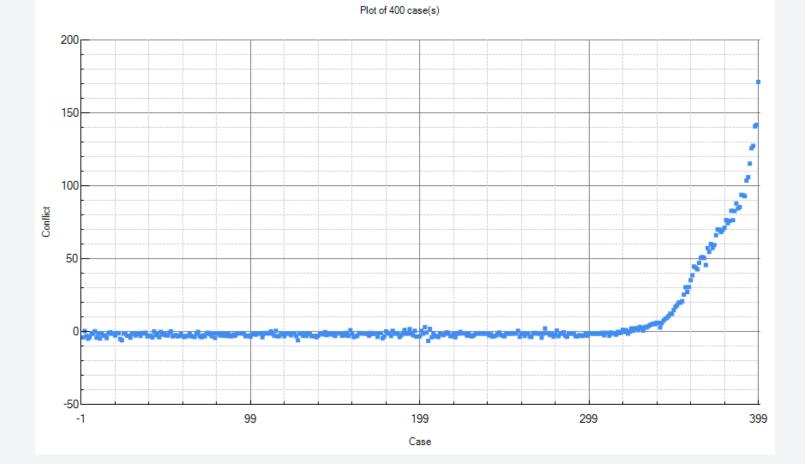


- Bi-model or tri-modal
- Univariate analysis looks
 normal

Multivariate prediction (log-likelihood)



Multivariate prediction (conflict)



intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

In this section we discuss time series prediction with Bayesian networks

TIME SERIES PREDICTION

Time series models

- Known as Dynamic Bayesian networks
- Discrete & continuous
- Multivariate time series
 - (Partial) Auto correlations
 - (Partial) Cross correlations
- A node can be linked to itself

Time series

- Temporal & non temporal variables
- Classification, Regression, Log likelihood
- Modelling time series data without a time series model

intelligent systems specialists

 \downarrow

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

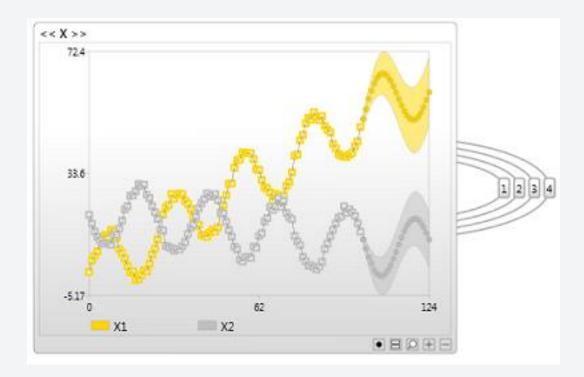
se	Gender	Age
	Female	35
	Male	?
	Female	25

Case	Time	Transition	Obs1	Obs2
1	0	Cluster 0	12.4	15.5
1	1	Cluster 1	14.2	13.45
2	0	Cluster 1	?	8.6
2	1	Cluster 1	12.3	14.0
2	2	Cluster 1	18.3	13.5
3	0	Cluster 2	9.3	8.7

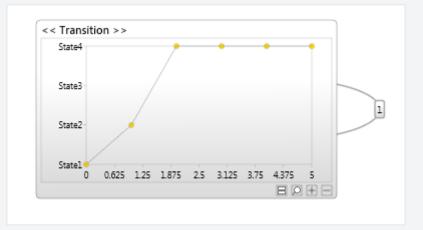
Types of time series model

- Auto regressive / vector auto regressive
- N-order markov models
- Hidden markov models
- Kalman filters
- Any of these well known models can be extended

Vector auto regressive



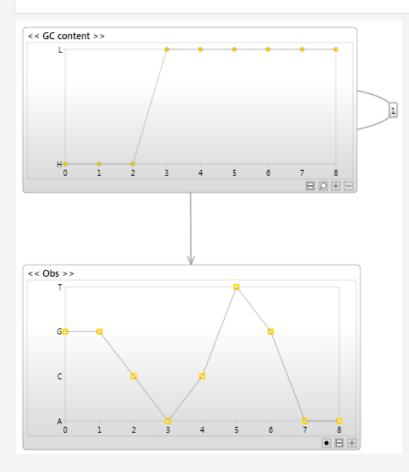
N-order markov models

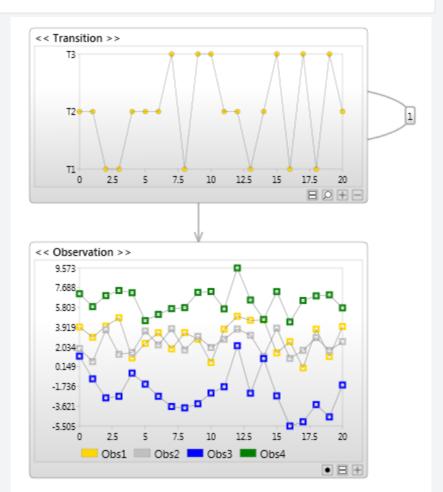


Bayes Server intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Hidden Markov model

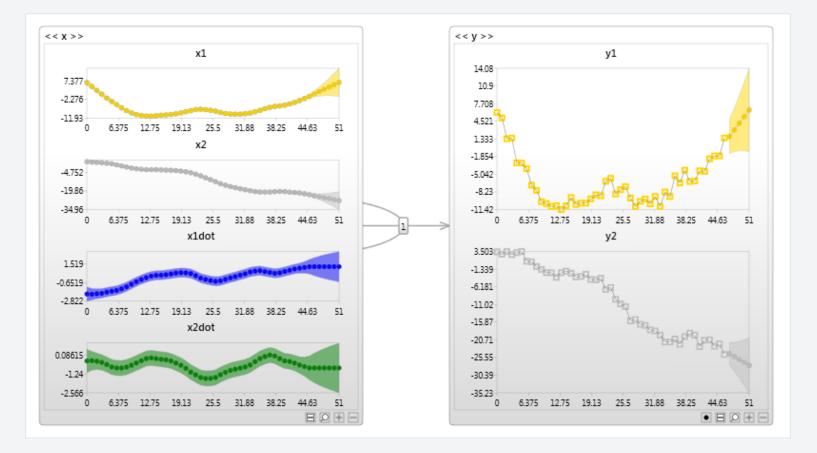




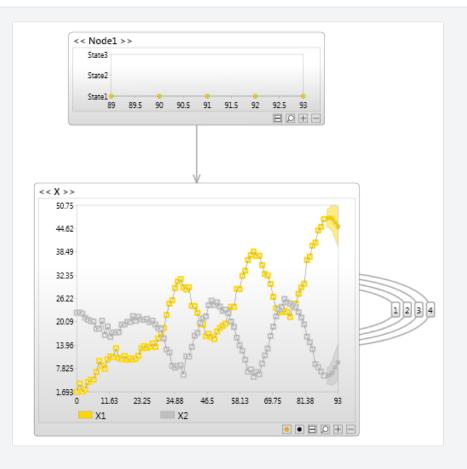
Bayes Server intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer

Kalman Filter



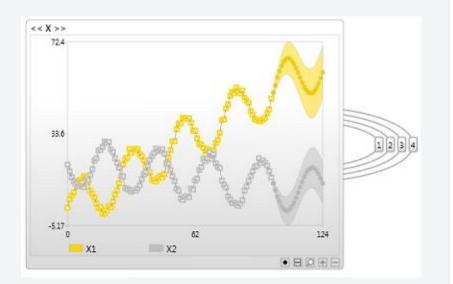
Mixture of vector auto regressive



Types of time series prediction

- **Prediction** calculating queries a number of time steps into the future.
- **Filtering** calculating queries at the current time.
- Smoothing calculating queries a number of time steps into the past (calculating historic values)
- Most probable sequence calculating the most likely sequence of past values (generalized version of the viterbi algorithm)

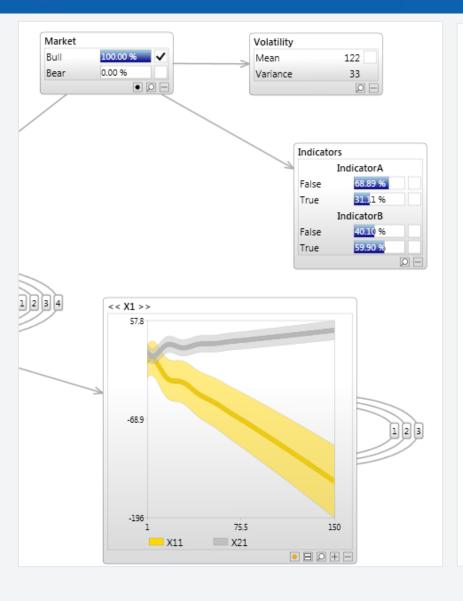
Demonstration



- Parameter Learning
- Prediction
 - Data explorer
 - Batch queries
- Sampling
 - Charting
- Structural learning
 - Determine links & orders

intelligent systems specialists

Website: www.BayesServer.com Email: john.sandiford@BayesServer.com Twitter: @BayesServer



Questions